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Arrays of identical limit-cycle oscillators have been used to model a wide variety of pattern-
forming systems, such as neural networks, convecting fluids, laser arrays and coupled biochemical
oscillators. These systems are known to exhibit rich collective behavior, from synchrony and
traveling waves to spatiotemporal chaos and incoherence. Recently, Kuramoto and his colleagues
reported a strange new mode of organization — here called the chimera state — in which
coherence and incoherence exist side by side in the same system of oscillators. Such states have
never been seen in systems with either local or global coupling; they are apparently peculiar
to the intermediate case of nonlocal coupling. Here we give an exact solution for the chimera
state, for a one-dimensional ring of phase oscillators coupled nonlocally by a cosine kernel. The
analysis reveals that the chimera is born in a continuous bifurcation from a spatially modulated
drift state, and dies in a saddle-node collision with an unstable version of itself.
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1. Introduction

1.1. The chimera state

A fascinating spatiotemporal pattern was reported
recently by Kuramoto, Battogtokh and Shima
[Kuramoto & Battogtokh, 2002; Kuramoto, 2003;
Shima & Kuramoto, 2004]. While studying arrays
of identical limit-cycle oscillators that are cou-
pled nonlocally, they found that for certain choices
of parameters and initial conditions, the array
would split into two domains: one composed of
coherent, phase-locked oscillators, coexisting with
another composed of incoherent, drifting oscilla-
tors. The coexistence of locking and drift was
robust. It occurred in both one and two spatial
dimensions, and for various kinds of oscillators,
including the Fitzhugh–Nagumo model, complex
Ginzburg–Landau equations, phase oscillators and
an idealized model of biochemical oscillators.

It is important to appreciate how unexpected
this coexistence state was. Nothing like it had ever
been seen before, at least not in an array of iden-
tical oscillators. Normally, identical oscillators set-
tle into one of a few basic patterns [Winfree, 1980;
Kuramoto, 1984; Cross & Hohenberg, 1993]. The
simplest is synchrony, with all oscillators moving
in unison, executing identical motions at all times.
Another common pattern is wave propagation, typ-
ically in the form of solitary waves in one dimen-
sion, spiral waves in two dimensions and scroll
waves in three dimensions. The common feature
in these cases is that all the oscillators are locked
in frequency, with a fixed phase difference between
them. At the opposite end of the spectrum is
incoherence, where the phases of all the oscilla-
tors drift quasiperiodically with respect to each
other, and the system shows no spatial structure
whatsoever. And finally, one sometimes sees more
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complex patterns, including modulated structures,
spatiotemporal chaos, intermittency and so on.

What was so odd about the coexistence state is
that two of these patterns (locking and incoherence)
were present in the same system, simultaneously.
This combination of states could not be ascribed
to the simplest mechanism of pattern formation —
a supercritical instability of the spatially uniform
oscillation — because it can occur even if the uni-
form state is linearly stable, as indeed it was for the
parameter values used by Kuramoto and his col-
leagues. Furthermore, it has nothing to do with the
classic partially locked/partially incoherent states
that occur in populations of nonidentical oscillators
with distributed natural frequencies [Winfree, 1967;
Kuramoto, 1984]. There, the splitting of the popu-
lation stems from the inhomogeneity of the oscilla-
tors themselves; the desynchronized oscillators are
the intrinsically fastest and slowest ones in the tails
of the distribution. In contrast, for the system stud-
ied by Kuramoto et al., there is no distribution of
frequencies. All the oscillators are the same, and
yet they still break apart into two groups of utterly
different character.

Because the coexistence state involves two
seemingly incompatible forms of dynamical behav-
ior, we will henceforth refer to it as “the chimera
state,” inspired by the mythological creature com-
posed of a lion’s head, a goat’s body and a serpent’s
tail. Today the word chimera is used more gener-
ally to indicate something made up of incongruous
parts, or something that seems wildly improbable
or fantastical.

Figures 1 and 2 show a realization of
the chimera state in the simplest setting, a
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Fig. 1. Phase pattern for a typical chimera state. Here
κ = 4.0, α = 1.45, N = 256 oscillators. Equation (1) was
integrated with fixed time step dt = 0.025 for 8000 iterations,
starting from φ(x) = 6 exp[−30(x − (1/2))2]r(x), where r is
a uniform random variable on [−(1/2), 1/2].

one-dimensional ring of phase oscillators [Kuramoto
& Battogtokh, 2002; Kuramoto, 2003]. The govern-
ing equation is

∂φ

∂t
= ω −

∫ 1

0
G(x − x′) sin[φ(x, t)

−φ(x′, t) + α]dx′ (1)

where φ(x, t) is the phase of the oscillator at posi-
tion x at time t. The space variable x runs from 0
to 1 with periodic boundary conditions, and should
be regarded as an angle on a circle (mod 1). The fre-
quency ω plays no role in the dynamics, in the sense
that one can set ω = 0 without loss of generality by
redefining φ → φ + ωt, without otherwise chang-
ing the form of Eq. (1). The kernel G(x − x′) pro-
vides nonlocal coupling between the oscillators. It is
assumed to be even, non-negative, decreasing with
the separation |x − x′| along the ring, and normal-
ized to have unit integral. Specifically, Kuramoto
and Battogtokh [2002; Kuramoto, 2003] used an
exponential kernel G(x − x′) ∝ exp(−κ|x − x′|).
Then, for parameter values α = 1.457 and κ = 4
and suitable initial conditions (to be discussed in
detail in Sec. 3), the system evolves to the chimera
state shown in Fig. 1.

In this snapshot of the instantaneous phases,
two distinct regions are conspicuous. The oscilla-
tors near x = 0 (and equivalently, x = 1) are phase-
locked. All of them move with the same constant
frequency; in a frame rotating at this frequency,
they would all look frozen. The smoothness and flat-
ness of the graph of φ(x) in this region indicates that
these oscillators are coherent as well, i.e. they are
nearly in phase.

Meanwhile, the scattered oscillators in the mid-
dle of Fig. 1 are drifting, both with respect to each

Fig. 2. Phase pattern for a typical chimera state shown on
the torus. Azimuthal angle indicates spatial position x. Phase
φ is constant along lines of latitude; the outer equator of the
torus corresponds to φ = 0.
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other and with respect to the locked oscillators.
Their motion is strongly nonuniform. They slow
down when they pass near the locked pack — which
is why the dots appear more densely clumped at this
phase — and then speed up as they lap it.

1.2. Puzzles

When we first learned about the chimera state by
reading [Kuramoto, 2003], we were amazed by it.
How could such a thing even be possible?

In fact, a little thought showed that it was prov-
ably impossible in two special cases that had been
studied previously:

• Global coupling: Chimera states cannot occur
for Eq. (1) with G(x) ≡ 1 and any choice of
0 ≤ α < π/2, because a Lyapunov function
exists for this case, demonstrating that almost all
solutions are attracted to the in-phase oscillation
[Watanabe & Strogatz, 1993, 1994].

• Sine coupling: If α = 0, corresponding to a pure
sine coupling in Eq. (1), chimera states are impos-
sible for any even kernel G of any range. This fol-
lows because Eq. (1) becomes a gradient system
in the frame rotating at frequency ω. Hence all
attractors must be fixed points, corresponding to
phase-locked solutions in the original frame, thus
ruling out the possibility of coexisting drift.

So the coexistence phenomenon must somehow rely
on a conspiracy between α �= 0 and the nonglobal
nature of the coupling. But how, exactly?

And for that matter, is the chimera state born
as soon as α �= 0, or at some value of α bounded
away from zero? In dynamical simulations like that
shown in Fig. 1, stable chimera states are observed
only when α is close to, but slightly less than, π/2.
Does that mean that these states do not exist for
smaller α, or just that their basins of attraction
shrink as α decreases?

Furthermore, what is the genealogy of the
chimera state, in the sense of bifurcation theory?
Is it born out of the vacuum, as a pair of stable
and unstable versions of itself? Or does it emerge
when a more familiar attractor loses stability? For
instance, does it bifurcate off the fully incoher-
ent state, in which oscillators are uniformly scat-
tered and drifting around the circle at every x?
That seems unlikely, since the phase pattern shown
in Fig. 3 looks pretty far from total incoherence;
even its drifting oscillators show some clumping in
phase. So maybe the chimera state branches off
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Fig. 3. Chimera state and order parameter curves for the
exponential kernel G(x) ∝ exp(−κ|x|), as used by Kuramoto
and Battogtokh [2002; Kuramoto, 2003]. Parameters are the
same as those in Fig. 1. (a) Phase pattern for chimera state.
(b) Local phase coherence R(x), computed from (2). Locked
oscillators satisfy R(x) ≥ ∆. (c) Local average phase Θ(x),
computed from (2).

the uniform in-phase state? But how can it, given
that the in-phase state is linearly stable for all
|α| < (π/2)?

Motivated by these puzzles, we have tried to
understand where the chimera state comes from,
and to pinpoint the conditions that allow it to exist.
A brief report of our findings appeared in [Abrams
& Strogatz, 2004].

1.3. Broader significance

Aside from the questions it raises, we believe the
chimera state is also more broadly significant for
nonlinear science, for two reasons.

First, it exemplifies the surprises that lurk
in nonlocally coupled systems. As Kuramoto
and his colleagues have pointed out [Kuramoto,
1995; Kuramoto & Nakao, 1996; Battogtokh &
Kuramoto, 2000; Kuramoto & Battogtokh, 2002;
Kuramoto, 2003; Tanaka & Kuramoto, 2003; Shima
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& Kuramoto, 2004], nonlocal coupling is a rela-
tively dark corner of nonlinear science in general,
and nonlinear oscillator theory in particular. Most
previous work on coupled oscillators has focused on
local coupling, where the interactions are assumed
to be solely between nearest neighbors, or global
coupling, where each oscillator interacts equally
strongly with all the others. The intermediate case
of nonlocal coupling is natural to explore next, and
has already revealed some interesting new forms of
dynamical behavior [Kuramoto, 1995; Kuramoto &
Nakao, 1996].

From a more applied perspective, nonlocal cou-
pling is important to investigate because it arises
in diverse systems throughout physics, chemistry
and biology. Examples include Josephson junction
arrays [Phillips et al., 1993], chemical oscillators
[Kuramoto, 1984], epidemiological models of dis-
ease spread [Medlock & Kot, 2003], the neural net-
works underlying the patterns on mollusc shells
[Ermentrout et al., 1986; Murray, 1989], localized
neural “bump” states [Ben Yishai et al., 1997;
Gutkin et al., 2001; Laing & Chow, 2001], and ocu-
lar dominance stripes in the visual cortex [Swindale,
1980; Murray, 1989].

Second, the chimera state is by no means an
oddity restricted to Eq. (1). On the contrary, it was
first seen in simulations of the complex Ginzburg–
Landau equation with nonlocal coupling [Kuramoto
& Battogtokh, 2002; Kuramoto, 2003], a funda-
mental model in the study of pattern formation.
That equation in turn can be systematically derived
from a wide class of reaction–diffusion equations,
under particular assumptions on the local kinet-
ics and diffusion strength that render the effective
coupling nonlocal [Kuramoto & Battogtokh, 2002;
Kuramoto, 2003; Tanaka & Kuramoto, 2003; Shima
& Kuramoto, 2004]. Under an additional assump-
tion that the coupling is also sufficiently weak (in a
precise sense), Shima and Kuramoto [2004] showed
that the original reaction–diffusion system can be
further reduced to a phase equation of the univer-
sal form

∂φ

∂t
= ω −

∫
dr′G(r − r′) sin

[
φ(r) − φ(r′) + α

]
where r labels the position of the oscillators and
the kernel G decays exponentially with distance:
G(r−r′) ∝ exp(−κ|r− r′|) . But this is just Eq. (1),
if the space is one-dimensional. So there is good rea-
son to expect that the coexistence phenomenon will
have some generality.

For example, in two dimensions, the coexistence
of locked and drifting oscillators manifests itself as
an unprecedented kind of spiral wave: one without
a phase singularity at its center [Kuramoto, 2003;
Shima & Kuramoto, 2004]. Instead, the oscillators
in the core are found to be completely desynchro-
nized from each other and from the uniform rota-
tion of the spiral arms. In effect, the core oscillators
mimic a phase singularity by being incoherent. A
better understanding of the one-dimensional case
might shed light on this remarkable new form of
pattern formation.

2. Summary of Prior Results

We begin by reviewing the results of Kuramoto
and Battogtokh [2002] and Kuramoto [2003]. After
uncovering the chimera state in their simulations of
Eq. (1), they were able to explain much of its struc-
ture analytically. Their elegant approach is a gener-
alization of Kuramoto’s self-consistency argument
for globally coupled oscillators [Kuramoto, 1984;
Strogatz, 2000].

In this approach, one first transforms (1) by
seeking a rotating reference frame in which the
dynamics become as simple as possible. Let Ω
denote the angular frequency of this rotating frame
(to be determined later, in the course of solving the
problem), and let

θ = φ − Ωt

denote the phase of an oscillator relative to this
frame. Next, introduce a complex order parameter
ReiΘ that depends on space and time:

R(x, t)eiΘ(x,t) =
∫ 1

0
G(x − x′)eiθ(x′,t)dx′. (2)

To see what this order parameter means intu-
itively, note that the integral on the right-hand side
of (2) performs a running average of eiθ over a win-
dow centered at x, with a width determined by the
width of the kernel G. Thus 0 ≤ R(x, t) ≤ 1 can
be viewed as a measure of the local phase coher-
ence at x, and Θ(x, t) represents the local average
phase. These two average quantities provide macro-
scopic proxies for the overall state of the continuum
of oscillators.

The real virtue of introducing the order param-
eter, however, is that we can now rewrite the gov-
erning equation (1) as

∂θ

∂t
= ω − Ω − R sin[θ − Θ + α] , (3)
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which makes it look as if the oscillators have
decoupled, though of course they are still
interacting through R and Θ, to which they each
contribute through (2). This observation suggests
that the problem can be attacked by the self-
consistency arguments of mean-field theory, even
though it is not globally coupled.

Now comes the key step. Suppose we restrict
attention to stationary solutions, in which R and Θ
depend on space but not on time. Now the equations
truly do decouple, in the following sense. One can
easily solve for the motion of the oscillator at each x,
subject to the assumed time-independent values of
R(x) and Θ(x). The oscillators with R(x) ≥ |ω−Ω|
asymptotically approach a stable fixed point θ∗,
defined implicitly by

ω − Ω = R(x) sin[θ∗ − Θ(x) + α]. (4)

The fact that they approach a fixed point in the
rotating frame implies that they are phase-locked
at frequency Ω in the original frame. On the other
hand, the oscillators with R(x)< |ω − Ω| drift
around the phase circle monotonically. To be con-
sistent with the assumed stationarity of the solu-
tion, these oscillators must distribute themselves
according to an invariant probability density ρ(θ).
(To ease the notation here and elsewhere, we have
suppressed the dependence on x whenever it is
clear from context.) And for the density to be
invariant, the probability of finding an oscillator
near a given value of θ must be inversely propor-
tional to the velocity there. From (3), this condition
becomes

ρ(θ) =

√
(ω − Ω)2 − R2

2π|ω − Ω − R sin(θ − Θ + α)| (5)

where the normalization constant has been chosen
such that

∫ π
−π ρ(θ)dθ = 1.

The resulting motions of both the locked and
drifting oscillators must be consistent with the
assumed time-independent values for R(x) and
Θ(x). To calculate the contribution that the locked
oscillators make to the order parameter (2), observe
that

sin(θ∗ − Θ + α) =
ω − Ω

R

cos(θ∗ − Θ + α) = ±
√

R2 − (ω − Ω)2

R

(6)

for any fixed point of (3). One can check that the
stable fixed point of (3) corresponds to the plus sign
in (6). Hence

exp[i(θ∗ − Θ + α)] =

√
R2 − (ω − Ω)2 + i(ω − Ω)

R
(7)

which implies that the locked oscillators contribute∫
dx′G(x − x′) exp

[
iθ∗(x′)

]
= e−iα

∫
dx′G(x − x′) exp

[
iΘ(x′)

]

×
√

R2 − (ω − Ω)2 + i(ω − Ω)
R

(8)

to the order parameter (2). Here the integral is
taken over the portion of the domain where R(x′) ≥
|ω − Ω|.

Next, to calculate the contribution from the
drifting oscillators, Kuramoto and Battogtokh
[2002; Kuramoto, 2003] replace exp[iθ(x′)] in (2)
with its statistical average

∫ π
−π exp(iθ)ρ(θ)dθ. Using

(5) and contour integration, they obtain∫ π

−π
exp(iθ)ρ(θ)dθ =

i

R
(ω − Ω −

√
(ω − Ω)2 − R2).

Therefore the contribution of the drifting oscil-
lators to the order parameter is∫

dx′G(x − x′)
∫ π

−π
exp(iθ)ρ(θ)dθ

= ie−iα

∫
dx′G(x − x′) exp

[
iΘ(x′)

]

× ω − Ω −√(ω − Ω)2 − R2(x′)
R(x′)

where now the integral is over the complementary
portion of the domain where R(x′) < |ω − Ω|.

Notice something curious: the integrand on
the right-hand side of the drifting contribution is
exactly the same as that found earlier in (8) for
the locked contribution; only their domains differ.
(This coincidence is not mentioned in [Kuramoto &
Battogtokh, 2002; Kuramoto, 2003].) To see that
the two expressions agree, note that√

R2 − (ω − Ω)2 + i(ω − Ω)

= i(ω − Ω −
√

(ω − Ω)2 − R2)
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as long as we choose the branch corresponding to
the “+i” square root of a negative number.

Hence the two contributions can be combined
into a single integral, yielding a slightly more com-
pact version of the self-consistency equation derived
in [Kuramoto & Battogtokh, 2002]:

R(x) exp[iΘ(x)]

= ie−iα

∫ 1

0
G(x − x′) exp[iΘ(x)]

× ω − Ω −√(ω − Ω)2 − R2(x′)
R(x′)

dx′.

To ease the notation a bit more, let

β =
π

2
− α

∆ = ω − Ω.
(9)

Then the self-consistency equation becomes

R(x)eiΘ(x) = eiβ

∫ 1

0
G(x − x′)eiΘ(x′)

× ∆ −√∆2 − R2(x′)
R(x′)

dx′. (10)

Equation (10) is to be solved for three
unknowns — the real-valued functions R(x) and
Θ(x) and the real number ∆ — in terms of the
assumed choices of β and the kernel G(x). Notice
that although ω itself is arbitrary up to a constant,
and hence so is Ω, their difference ω − Ω is physi-
cally meaningful; it is determined by the condition
that the long-term dynamics become stationary in
the frame rotating at frequency Ω.

Initially, we could not see how to solve the self-
consistency equation (10) numerically. We wrote to
Kuramoto for advice, and he described an itera-
tive scheme to determine the functions R(x) and
Θ(x), based on initial guesses obtained from the
dynamical simulations. The idea behind the scheme
is that the current estimates of R(x) and Θ(x) can
be entered into the right-hand side of (10), and used
to generate the new estimates appearing on the left-
hand side.

Still, that leaves open the question of how to
determine ∆. We seem to have only two equations
(given by the real and imaginary parts of Eq. (10))
for three unknowns. Fortunately, a third equation
can be imposed to close the system. Because (10)
is left unchanged by any rigid rotation Θ(x) →
Θ(x) + Θ0, we can specify the value of Θ(x) at
any point x we like; this freedom is tantamount to

choosing an origin in the rotating frame. A natu-
ral choice would be to demand Θ(0) = 0, but as
seen in Sec. 4, another choice turns out to be more
convenient.

Kuramoto and Battogtokh [2002; Kuramoto,
2003] confirmed that the self-consistency approach
works: their results from numerical integration of
the dynamical equations (1) match those obtained
by solving the self-consistency equation (10)
iteratively.

Figure 3 shows the chimera state along with the
graphs of R(x) and Θ(x) for the parameters used in
Fig. 1. The curves in Figs. 3(b) and 3(c) are periodic
and reflection-symmetric. In fact, they resemble
cosine waves, which made us wonder whether (10)
might have a simple closed-form solution, perhaps
in some perturbative limit as a parameter tends to
zero. To see where such a limit might come into
play, we hoped to first replicate the simulations of
Kuramoto and Battogtokh [2002; Kuramoto, 2003]
and then to explore parameter space more widely.

3. A First Round of Simulations

Unfortunately, we could not find the chimera state
in our early simulations of Eq. (1). No matter how
we started the system, it always converged to the
in-phase state. In the report that announced the
chimera state, Kuramoto [2003] did not give precise
details of the initial condition he used. He described
it as a “suitable single-humped initial phase pat-
tern” [Kuramoto, 2003, p. 219] which we incorrectly
took to mean something like φ(x, 0) = a+ b cos x or
e−a cos x.

Eventually, we asked Kuramoto for help
(again!), and he kindly explained what he meant.
(He also sent us his paper with Battogtokh
[Kuramoto & Battogtokh, 2002], where the descrip-
tion of the initial condition is more explicit.) At
each x, a uniform random number φ(x, 0) is chosen
within some interval whose width varies with x in
a single-humped fashion. Specifically, the width is
narrowest near x = 0 (mod 1), meaning that the
oscillators are most nearly in phase there, initially.
As x increases toward the diametrically opposite
point of the domain at x = 1/2, the phases are scat-
tered progressively over larger and larger regions on
the phase circle (meaning the oscillators are placed
more and more incoherently there, initially). The
effect of this procedure is to give the system a jump-
start, by placing it in a partially coherent/partially
incoherent state to begin with.
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To be more precise, Kuramoto used a random
distribution with a Gaussian envelope: φ(x, 0) =
6 exp[−30(x− (1/2))2 ]r(x), where r(x) is a uniform
random number on the interval −(1/2) ≤ r ≤ 1/2.
For the parameters used in Fig. 3, this initial con-
dition indeed evolves to the chimera state reported
in [Kuramoto & Battogtokh, 2002; Kuramoto,
2003].

Then we ran simulations to see how far this
state could be continued by decreasing α, know-
ing that it would have to disappear or lose sta-
bility somewhere before α = 0. To track its
fate along the way, we also computed several
statistics:

1. the spatial average of R(x), given by 〈R〉 =∫ 1
0 R(x)dx;

2. the amplitude of R(x), defined as Ramp =
Rmax − Rmin;

3. fdrift, the fraction of the spatial domain occupied
by drifting oscillators;

4. the difference ∆ = ω − Ω between the nomi-
nal frequency of individual oscillators and their
collective frequency when locked; and

5. ∆max, the largest value of the time-averaged
drift velocity relative to the rotating frame.
This quantity measures the average speed of the
fastest drifting oscillator. From (3), it can be cal-
culated as maxx|∆(x)| = maxx|

√
∆2 − R2(x)|,

where the maximum is taken only over the drift-
ing oscillators.

Figure 4 shows how fdrift varies when κ is held
constant but α is changed smoothly. We generated
similar graphs for each of the statistics mentioned
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Fig. 4. The fraction of oscillators drifting as the coupling
parameter α varies. Here κ = 4.0, N = 256 oscillators,
dt = 0.025 for 100 000 iterations.
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Fig. 5. Amplitude of the curve R(x), depicted as a contour
plot in parameter space, and calculated by averaging over the
instantaneous R curves during numerical integration. Here
G(x) ∝ exp(−κ|x|), N = 80 oscillators, the integration time
step is dt = 0.025, and integration continued for 20 000 iter-
ations. Lighter colors indicate smaller amplitude; lightest is
Ramp = 0.0 and darkest is Ramp = 0.13.

above, and all showed a jump to the uniform syn-
chronized state as α decreased below some critical
value αc. From these results it appeared that when
κ = 4.0, the chimera state ceased to exist some-
where around αc ≈ 1.37. The transition seemed to
be discontinuous, which suggested that αc could not
be calculated by a naive perturbation expansion. If
it was to be calculable at all, something more subtle
would be required.

The next step was to investigate how these
results vary with κ. Recall that the kernel in (1)
is G(x) = C exp(−κ|x|), so 1/κ sets a characteristic
length scale. Roughly speaking, it is the distance
over which the nonlocal coupling is substantial. So
the limit κ → 0+ corresponds to global coupling
G(x) ≡ 1. This can also be checked directly, noting
that the normalization constant for the exponen-
tial kernel on the circle is given by C = (κ/2)(1 −
e−κ/2)−1.

Figure 5 shows a rough contour plot of Ramp in
the (α, κ) parameter plane. Crude as this plot is, its
message is still clear. The stable chimera state evi-
dently lives in a wedge in parameter space, bounded
on one side by the line α = π/2 and on the other by
a curve α = αc(κ) that is nearly a straight line. By
its very shape, the picture directs our attention to
the corner of the wedge, to the simultaneous limit
as α → π/2 from below and κ → 0 from above.
Apparently something crucial happens in that
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Fig. 6. Chimera state and corresponding order parame-
ter curves for the cosine kernel, shown in the same format
as Fig. 3, and qualitatively similar to it. Parameters are
A = 0.995, β = 0.18, N = 256 oscillators; Eq. (1) was inte-
grated with fixed time step dt = 0.025 for 200 000 iterations,
starting from φ(x) = 6r exp(−0.76x2), where r is a uniform
random variable on [−(1/2), 1/2].

corner — the chimera state is born there. And
so this is where perturbation theory should be
conducted.

To check that the wedge of Fig. 5 was not an
artifact of the exponential kernel assumed above,
we also calculated the corresponding contour plots
for the cosine kernel

G(x) =
1
2π

(1 + A cos x), (11)

where 0 ≤ A ≤ 1. Here the spatial domain has been
redefined to −π ≤ x ≤ π for convenience, and to
bring out its ring geometry and the reflection sym-
metry of the chimera state. Figure 6 confirms that
the cosine kernel gives a similar chimera state to
that for the exponential kernel used above, while
Fig. 7 demonstrates that the wedge in parameter
space is preserved as well. All that is reassuring,
because as it happens, the cosine kernel also has the
pleasant property that it allows the self-consistency
equation to be solved analytically.

1.5 1.57
0

0.25

α

A

Fig. 7. Contour plot of Ramp for the chimera state with
cosine kernel. Note the similarity to Fig. 5 for the expo-
nential kernel. Here G(x) = (1/2π)(1 + A cos x), N = 80
oscillators, the integration time step was dt = 0.025, and
integration continued for 30 000 iterations. Same color scale
as in Fig. 5.

4. An Exactly Solvable Case

From now on, let G(x) be given by the cosine ker-
nel (11), and let the spatial domain be −π ≤ x ≤ π
with periodic boundary conditions. For this case,
we will show that the functional form of the order
parameter can be obtained exactly, which in turn
yields the explicit x-dependence of R(x) and Θ(x).
All the resulting expressions, however, still con-
tain two unknown coefficients, one real and the
other complex, which need to be determined self-
consistently. In this way, the two unknown func-
tions in the self-consistency equation are exchanged
for two unknown numbers — a drastic reduction in
the difficulty of the problem.

The self-consistency equation (10) is

R(x)eiΘ(x) = eiβ

∫ π

−π
G(x − x′)eiΘ(x′)h(x′)dx′ (12)

where we have introduced the notation

h(x′) =
∆ −√∆2 − R2(x′)

R(x′)
. (13)
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Let angular brackets denote a spatial average:

〈f〉 =
1
2π

∫ π

−π
f(x′)dx′.

Then, substituting the cosine kernel (11) into (12)
and expanding G(x−x′) by a trigonometric identity,
we find

ReiΘ =
eiβ

2π

∫ π

−π
[1 + A cos x cos x′

+ A sinx sin x′]h(x′)eiΘ(x′)dx′

= eiβ
〈
heiΘ

〉
+ eiβA

〈
heiΘ cos x′〉cos x

+ eiβA
〈
heiΘ sin x′〉sin x

= c + a cos x (14)

where the coefficients c and a must satisfy their
own version of the self-consistency equations, now
given by

c = eiβ
〈
heiΘ

〉
(15)

and

a = Aeiβ
〈
heiΘ cos x′〉. (16)

Note that the coefficient of sin x vanishes in
(14). This follows from the assumption that R(x′) =
R(−x′) and Θ(x′) = Θ(−x′), as suggested by the
simulations; then h(x′) in (13) is also even, and so
the integral

〈
heiΘ sinx′〉 in (14) vanishes by odd-

ness. As will be shown next, this assumption of
reflection symmetry is self-consistent, in the sense
that it implies formulas for R(x) and Θ(x) that
indeed possess this symmetry.

For example, to calculate R(x) in terms of the
unknown coefficients a and c, observe that

R2 = (ReiΘ)(Re−iΘ)

= (c + a cos x)(c∗ + a∗ cos x)

= |c2| + 2Re(ca∗) cos x + |a|2 cos2 x (17)

which is an even function, and which also helps to
explain why the graph of R(x) in Fig. 3 resembled
a cosine wave.

Likewise, Θ(x) is an even function reminiscent
of a cosine because

tan Θ(x) =
R(x) sin Θ(x)
R(x) cos Θ(x)

=
Im(c) + Im(a) cos x

Re(c) + Re(a) cos x
. (18)

Another simplification is that c can be taken
to be purely real and non-negative, without loss of
generality. This follows from the rotational sym-
metry of the governing equations. In particular,
the self-consistency equation (12) is left unchanged
by any rigid rotation Θ(x) → Θ(x) + Θ0. Thus
we are free to specify any value of Θ(x) at what-
ever point we like. The most convenient choice is
to set

Θ
(π

2

)
= 0.

Then at that value of x the equation ReiΘ = c +
a cos x reduces to

R
(π

2

)
= c.

Since R is real and non-negative, so is c. Hence, we
take

Im(c) = 0 (19)

from now on.
The final step in closing the equations for a

and c is to rewrite the averages in (15) and (16)
in terms of those variables. To do so, we express
heiΘ as

heiΘ = (ReiΘ)
h

R

= (c + a cos x)
∆ −√∆2 − R2(x)

R2(x)

=
∆ −√∆2 − R2(x)

c + a∗ cos x
(20)

where we have used (17) and the real-valuedness of
c to simplify the second line above. Inserting (17)
and (20) into (15) and (16), we obtain the desired
self-consistency equations for a and c:

c = eiβ

〈
∆ − (∆2 − c2 − 2Re(a) c cos x − |a|2 cos2 x

) 1
2

c + a∗ cos x

〉
(21)

a = Aeiβ

〈
∆ − (∆2 − c2 − 2Re(a) c cos x − |a|2 cos2 x

) 1
2

c + a∗ cos x
cos x

〉
. (22)
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This pair of complex equations is equivalent to
four real equations for the four real unknowns c,
Re(a), Im(a), and ∆. The solutions, if they exist,
are to be expressed as functions of the parameters β
and A.

5. Clues Based on Numerics

Before we plunge into the details of solving Eqs. (21)
and (22) simultaneously, let us pause to remember
what we are trying to do.

We want to understand where the chimera state
lives in parameter space and how it bifurcates.
Guided by the simulations of Sec. 3, we expect that
(21), (22) should have chimera solutions through-
out the wedge-shaped region of parameter space
shown in Fig. 7. Assuming that is true, we hope
that these solutions will continue all the way down
to the corner (α,A) = (π/2, 0), corresponding to
(β,A) = (0, 0), where they might be analyzed with
perturbation theory.

Our strategy, then, is to start by finding one
solution to (21), (22), by any means possible, for
parameter values anywhere in the wedge. Having
found this solution, we can use it as a base point
for a numerical continuation method. Then we pro-
ceed to dive into the corner, following a straight
line through parameter space between the base
point and the corner. In this way we convert the
problem to a one-parameter study of the solutions
of (21), (22). Sufficiently close to the corner, we
expect that the solutions will display some sort
of scaling behavior with respect to the parame-
ter. That scaling will then suggest clues about
the right ansatz for a subsequent perturbation
calculation.

So first we have to come up with a chimera solu-
tion to (21), (22). It is not just a matter of plugging
the equations into a standard root-finding package.
The trouble is that these equations also have other
solutions that we are less interested in, and we do
not want the numerical root-finding scheme to con-
verge to them instead.

In particular, the in-phase solution, where all
the oscillators are locked at the same phase and
none of them are drifting, has a large basin of attrac-
tion that competes with that of the chimera state.
To see what values of a, c, and ∆ correspond to the
in-phase state, note that when φ(x, t) = φ(x′, t) for
all x and x′, Eq. (1) implies φ(x, t) = φ0 + (ω −
sin α)t. Hence R = 1 and therefore c = 1 and a = 0.
And because Ω = ω − sin α = ω − cos β, we have

∆ = ω − Ω = cos β. Thus

(a, c,∆)in-phase = (0, 1, cos β). (23)

It is easy to check that this satisfies (21), (22) for
all values of A and β.

To reduce the chance that the root-finder will
converge onto this in-phase state, we need to con-
coct an initial guess that is very close to a gen-
uine chimera state. To find one, we numerically
integrated Eq. (1) using the cosine kernel, and fit
the resulting graphs of R(x) and Θ(x) to the exact
formulas (17) and (18), to estimate the values of
a and c. The frequency difference ∆ was obtained
directly from the simulation, by setting ω = 0 and
then computing ∆ = ω − Ω = −Ω, where Ω is
observable as the collective frequency of the locked
oscillators.

In this way we estimated a = 0.156 + 0.072i,
c = 0.591, ∆ = −0.720 for the stable chimera
state at parameter values A = 0.99, β = 0.081. We
fed this starting guess into the Matlab root-finding
and numerical continuation program MatCont
[Dhooge et al., 2003] and found rapid convergence
to a = 0.162+0.051i, c = 0.588, ∆ = −0.723. From
there, we could continue the solution in either A or
β or some combination, as we saw fit.

This approach enabled us to track the chimera
state throughout parameter space, until it disap-
peared along a critical curve corresponding to the
boundary of the wedge shown earlier. The results of
this calculation are shown in Fig. 8. As expected,
the boundary of the region is nearly a straight line,
and it extends down to the origin.

1

0
0

0.3β

Α

Perturbation
Theory

Chimera State
Exists

Fig. 8. The region of parameter space in which the chimera
state exists. Solid line, exact boundary determined by numer-
ical solution of (21) and (22); dashed line, leading order
approximation to this boundary obtained by perturbation
theory (see text).
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6. Perturbation Theory

The next step is to look for scaling laws to guide
our perturbation calculations. Figure 9 shows the
results of numerical continuation starting from
(β,A) = (0.08, 0.99) and moving along the line
A = 12.375β towards the origin, all the while
remaining within the wedge shown in Fig. 8. The
observed behavior of the variables along that line
suggests the following ansatz near the origin:

∆ ∼ 1 + ∆1ε + ∆2ε
2

c ∼ 1 + c1ε + c2ε
2

Re(a) ∼ uε2

Im(a) ∼ vε2

(24)

where we have introduced ε = A as the small
parameter.

Next, we assume that this ansatz continues to
hold along other lines through the origin. Such lines
can be parametrized as

A = ε,

β = β1ε,

0

0.2

0

Re(a )

Im(a )

1

(a)

0

0.01

0 0.25

Re(a )
Im(a )y  = 0.2 x 2

y  = 0.07 x 2

(b)

0.5

1

0 A

c
y  = 1− 0.43 x  

1

(c)

0.7

1

0 1A

∆
y  = 1 − 0.44 x 

(d)

Fig. 9. Scaling laws near the origin in parameter space,
along the line A = 12.375β. Data were collected from numer-
ical continuation of a known chimera state, for an ensemble
of parameter values. Approximate fits were then determined
by least-square regression. (a) Scaling of real and imaginary
parts of a; (b) Zoom of panel (a) near origin in parameter
space. Note that curves are quadratic; (c) Linear scaling of
real-valued variable c; (d) Scaling of ∆. Note that ∆ scales
linearly for small values of A (purple).

where A and β tend to zero simultaneously as ε → 0.
Here β1 is a free parameter inversely related to the
slope of the lines. Thus the asymptotic shape of
the wedge in Fig. 8, sufficiently close to the origin,
will be determined from the maximum and mini-
mum values of β1 for which a perturbative solution
exists.

Substituting the ansatz (24) into the self-
consistency equation (21) for c, and retaining only
terms up to O(

√
ε) gives

1 + O(ε)

= (1 + iβ1ε)

〈
1 + ∆1ε − (1 + 2∆1ε − 1 − 2c1ε)

1
2

1 + c1ε

〉

= 1 −
√

2
√

∆1 − c1

√
ε + O(ε),

implying that

∆1 = c1. (25)

Now we retain terms up to O(ε) on both sides,
and apply Eq. (25) whenever necessary to cancel
terms. At this order, Eq. (21) becomes

1 + c1ε = 1 + iβ1ε − ε
√

2〈
√

(∆2 − c2) − u cos x〉.
(26)

To simplify notation, let

δ = ∆2 − c2. (27)

After breaking up the previous expression (26) into
two equations for the real and imaginary parts, and
equating terms of O(ε), we get

c1 = −Re[
√

2〈√δ − u cos x〉] (28)

β1 = Im[
√

2〈√δ − u cos x〉]. (29)

Repeating the same expansion to O(ε) in the self-
consistency equation (22) for a yields two analogous
equations:

u = −Re[
√

2〈cos x
√

δ − u cos x〉] (30)

v = −Im[
√

2〈cos x
√

δ − u cos x〉]. (31)

Equations (28)–(31) form a closed system for
the variables (c1, u, v, δ), given the parameter β1.
But to solve these equations, it proves more conve-
nient to regard β1 as a variable, and δ as a param-
eter; we adopt this point of view in what follows.

There is another important structural aspect of
Eqs. (28)–(31), namely, that (30) is distinguished in
that it involves only two unknown quantities. It has
the form u = f(u, δ) and can be solved numerically
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Fig. 10. Roots of Eq. (30) for various values of δ. Red indi-
cates negative δ and blue positive δ. For δ < −0.028 there
are no roots; for −0.028 < δ < 0, two roots; for 0 < δ < 1/8,
one root; for 1/8 < δ < 0.196, two roots; and for δ > 0.196,
no roots.

for a given δ. When a solution exists, all other vari-
ables (c1, β1, v) can be generated parametrically
from the (u, δ) pair. Thus, the problem of solving
Eqs. (28)–(31) reduces to a root-finding exercise in
one dimension instead of four.

Figure 10 plots the graph of the difference
f(u, δ) − u for several values of δ. The zeros of this
graph correspond to the solutions of (30), and yield
the desired (u(δ), δ) pairs. These are then substi-
tuted into the remaining equations to obtain c1(δ),
β1(δ), and v(δ), from which various quantities of
physical interest can be derived.

6.1. Calculation of fdrift

For example, we can use the perturbative solution
to find fdrift, the fraction of the system that is drift-
ing. It is most convenient to calculate this quantity
first in terms of δ, and then later re-express it in
terms of the more natural control parameter β1.

To find the drifting oscillators, recall from Fig. 6
that the cutoff between the locked portion and the
drifting portion occurs at the crossover value x = xc

where R(xc) = |∆|. Substituting (17) for R2 and
equating this to ∆2, we obtain

|c|2 + 2Re(ca∗) cos xc + |a|2 cos2 xc = ∆2. (32)

Plugging in the ansatz (24) and keeping terms up
to order ε2, we find

1 + 2c1ε + (c2
1 + 2c2)ε2 + 2uε2 cos xc

= 1 + 2∆1ε + (∆2
1 + 2∆2)ε2. (33)

Finally, because of (25), this simplifies to

cos xc =
∆2 − c2

u
=

δ

u
. (34)

Since the spatial domain of the ring has length 2π
and 2xc is the length of the region occupied by drift-
ing oscillators, the fraction of the chimera state cor-
responding to drifting oscillators is fdrift = xc/π,
and hence

fdrift =
1
π

∣∣∣∣cos−1

(
δ

u(δ)

)∣∣∣∣ . (35)

Figure 11 plots the numerically computed
fdrift(δ) against β1(δ). The curve has a turning point
at β1 ≈ 0.22, when about 44% of the system is drift-
ing. Presumably, this turning point stems from a
saddle-node bifurcation in the underlying dynamics.
In our simulations, we only see the upper branch of
this curve, suggesting that this corresponds to the
stable version of the chimera state. The reciprocal of
the critical β1 is about 4.5, which is the slope of the
dashed line shown in Fig. 8, in excellent agreement
with the boundary of the wedge found numerically.

6.2. Birth and death of the
chimera state

Although the parametric dependence of fdrift seems
to be conveniently expressed with respect to β1,
that representation conceals a lot. Several dynam-
ically distinct states of the system are invisible
because they are all squeezed onto a single point
(β1, fdrift) = (0, 1), as will be seen below. It is much
more revealing to use δ instead of β1.

Therefore, we now examine the system in the
set of coordinates shown in Fig. 12, with u plot-
ted vertically and δ horizontally. This picture is

0.00

1.00

0.00 0.22β1

fdrift

0.44

Fig. 11. Fraction of chimera state consisting of drifting oscil-
lators as a function of β1. Solid line indicates stable chimera,
dotted line indicates unstable. The maximum β1 determines
the line bounding the wedge-shaped existence region in Fig. 8.
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Fig. 12. Diagram of bifurcations giving rise to the chimera
state in u–δ plane. Insets show average frequency ∆ versus
x. Please see text for definitions of the perturbative variables
δ and u, and for a detailed explanation of this figure.

a compendium of all the stationary states of the
system — the stable and unstable chimera, along
with other states that we have not mentioned yet,
which we call uniform drift, modulated drift, and
homoclinic locked states. The virtue of this repre-
sentation is that it allows us to see each bifurcation
that occurs as the chimera state comes into exis-
tence and later disappears. Beginning at the origin
and moving counterclockwise around the kidney-
bean shaped cycle, we have:

1. Homoclinic locked state: u = δ = 0. Here, all the
oscillators are locked in phase, and hence frozen
in the rotating frame. Accordingly, the average
frequency ∆(x) of the oscillators vanishes for all
x, as shown in the inset. But one can show that
this state is not linearly stable. In fact, the exact,
nonperturbative counterpart of this state is the
in-phase locked state (23) at the critical param-
eter value β = 0, where this state undergoes a
homoclinic saddle-node bifurcation.

2. Spatially uniform drift : For u = 0 and small
δ > 0, the system has a stationary state in
which all the oscillators drift in a way that varies
strongly in time but remains uniform in x. The
order parameter R(x) is independent of x and
close to 1, meaning that the oscillators are nearly
in phase for nearly all of the time. An individual

oscillator executes a jerky motion around its
phase circle, lingering near θ = 0 and then whip-
ping around the rest of the phase circle back to
this point. The associated plot of ∆(x) is flat
because of the uniformity in x.

In terms of the perturbative variables used
in Fig. 12, this state appears on the line u = 0
with δ > 0. Then (31) shows that v = 0 as
well; hence a = 0, to O(ε2

)
. So (17) implies that

R(x) must be real and constant and (18) implies
that Θ(x) = 0. Equation (29) tells us that such
a state is possible only if β1 = 0, which sug-
gests that one can find an exact, nonperturbative
version of the uniform drift state when β = 0.
Indeed, seeking a solution of the self-consistency
equation (12) with β = 0,Θ(x) = 0, and con-
stant R(x), one finds R2 = ∆ − √

∆2 − R2

since the kernel G is normalized. Hence, along
this line β = 0, Θ(x) = 0, and R(x) = R =√

2∆ − 1.
3. Onset of spatial structure: At the lower right cor-

ner of the kidney bean, the function f(u, δ) − u
(Fig. 10) becomes tangent at the origin, intro-
ducing a new branch of solutions with Θ = 0
and β = 0 but with the coherence R varying
spatially. This is the birth of spatial structure
in the system. It happens for δ = 1/8. The
nonperturbative generalization of this result is
∆ = 2/(2 + A). (See Appendix A.)

4. Modulated drift : Along the first curved branch,
all oscillators continue to drift, but now there is
spatial structure in the R(x) curve, leading to
a modulated pattern of average velocities (see
inset). However, the average angle Θ(x) is still
identically 0.

5. Chimera birth: At the point where u = δ,
the first locked oscillators are born. For the
first time, v and β1 become nonzero (see
Eq. (29), (31)). Until this point, all of the states
have been confined to the vertical axis of Fig. 8;
now we finally we move off the wall. The curve
of average velocities ∆(x) touches the x-axis at
a single point. Meanwhile, the system develops
spatial structure in its average phase: Θ(x) is no
longer identically zero.

This bifurcation can be shown to occur at δ =
16/(9π2), by evaluating the integral in (30) with
u = δ; also, see Appendix B for an exact calcula-
tion of the chimera state at birth.

6. Stable chimera: Along the top of the kidney
bean, the chimera state is dynamically stable.
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After its birth from the spatially modulated
drift state, it gradually develops an increas-
ing fraction of locked oscillators as we move in
the counterclockwise direction. Locked oscilla-
tors correspond to the zero part of the ∆(x)
curve (they appear motionless because the ref-
erence frame was chosen to co-rotate with
them).

7. Saddle-node bifurcation: As we continue to move
counterclockwise, the value of β1 grows (along
with the fraction of locked oscillators), and
reaches its maximum at the point where the sta-
ble chimera ceases to exist. The disappearance is
a result of a saddle-node bifurcation — a collision
with an unstable chimera state — and occurs
when about 44% of the system is drifting.

8. Unstable chimera: Along the unstable dashed
branch, the fraction of locked oscillators contin-
ues to grow. But the value of β1 now begins to
decrease, indicating a movement back towards
the wall in Fig. 8. The system returns to its origi-
nal state when all oscillators become locked, with
δ = u = β1 = 0 and R = 1.

Taking a step back, we can see an interest-
ing message of Fig. 12. The stable and unstable
chimera states are continuously connected though
the branches of drifting states, shown in solid
red and dotted green lines. If we had used the
β1 representation instead (as in Fig. 11), both of
these connecting branches would have shrivelled
down to a point. The two kinds of chimera states
would seem disconnected in a way that they really
are not.

7. Discussion

Our main result in this paper is an exact solution
for the chimera state, for the special case of a cosine
kernel. That solution also shed light on the bifurca-
tions which create and destroy the chimera.

In retrospect, it is not surprising that a cosine
kernel would make the self-consistency equation
(10) as tractable as possible, because the right-hand
side of (10) is a convolution integral, and trigono-
metric functions behave nicely under convolution.
For this reason, it should be straightforward to
extend the calculations to include more harmon-
ics in G. Using the same argument as in Sec. 4,
one can see that the exact solution for the order
parameter (14) will have the same number of har-
monics as G has. This approach would then give a

systematic way to solve the self-consistency equa-
tion for any kernel representable as a finite Fourier
cosine series. By taking more and more terms, this
approach also gives a way to approximate results
for any even kernel, as long as it is representable by
a Fourier series.

Unfortunately, the trick of choosing a special
kernel may not work as well in two (or three) spa-
tial dimensions. That could limit the applicabil-
ity to two-dimensional chimeras, such as the novel
spiral waves computed numerically in [Kuramoto,
2003]. Nevertheless, the idea of seeking a tractable
kernel that can simplify the problem may itself be
useful.

Another caveat is that, despite its usefulness
as a mathematical tool, the perturbative approach
adopted here does not give a rigorous understand-
ing of the bifurcations in the original problem. One
would like to understand the bifurcation scenarios
for all values of the coupling parameter A, which
essentially measures how far the nonlocal coupling
deviates from strictly global coupling. In Appen-
dices A and B, we show two results along these
lines.

One interesting aspect of the perturbative
approach is that it draws our attention to the spe-
cial parameter values A = 0, β = 0 (or equiva-
lently α = π/2). Here the system has global cosine
coupling and is known to be completely integrable
[Watanabe & Strogatz, 1993, 1994]. So in a sense,
what we have done in this paper is perturb off
this extremely degenerate system, which raises the
question of whether other, unforeseen attractors
might also lurk nearby, for different choices of initial
conditions.

The surprising nature of the chimera state
makes us wonder if it could be created artificially
in a laboratory experiment, or possibly even occur
naturally in some system.

As a first attempt to judge whether this might
be possible, we tried to integrate the phase equa-
tion (1) with slightly nonuniform frequencies ωi,
to mimic the inhomogeneities that would occur in
any real system, and to test whether the chimera
is an artifact of assuming identical oscillators. We
added a uniform random variable r ∈ [−B,B] to the
native frequency ω for each oscillator, and we found
the chimera state persisted, as long as B was not
too large — less than about 4% of ∆ (the frequency
difference between the locked oscillators’ Ω and the
mean natural frequency ω). This estimate should
be conservative when compared with a presumably
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more realistic Gaussian random distribution
of ωi.

There are several possibilities for experimen-
tal systems where the distinctive effects of nonlo-
cal coupling, including the chimera state, might be
observed. Laser arrays seem to be good candidates.
In some cases, such as semiconductor arrays with
evanescent coupling [Winful & Wang, 1988; Li &
Erneux, 1992], they are governed by equations simi-
lar to (1), though these are usually approximated as
nearest-neighbor. Likewise, phase equations of this
form arise in the description of coupled electronic
phase-locked loops, and superconducting arrays of
Josephson junctions [Swift et al., 1992; Wiesenfeld
et al., 1998]. Finally, an idealized model of biochem-
ical oscillators, coupled by a diffusible substance
that they all produce, can give rise to an effectively
nonlocal coupling and chimera states; indeed, this
was the motivating example that led Kuramoto and
his colleagues to their discovery.

Whether or not the chimera state turns out to
experimentally realizable, it is fascinating in its own
right, as a strange new mechanism for pattern for-
mation in spatially extended nonlinear systems. Its
existence underscores how much still remains to be
discovered, even in what would seem to be the sim-
plest possible model of pattern formation: a one-
dimensional collection of identical oscillators.
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Appendix A

Onset of Spatial Structure

We now show that the birth of spatial structure can
be calculated nonperturbatively. We have already
seen in Sec. 6.2 that when β = 0, the system has
an exact state of spatially uniform drift with con-
stant coherence R(x) ≡ √

2∆ − 1 and average phase
Θ(x) ≡ 0. For this special state, the modulation
amplitude a = 0 and the mean level of the coher-
ence c = R =

√
2∆ − 1. At the bifurcation that cre-

ates spatial variation in the coherence, the real part
of a becomes nonzero; at leading order in perturba-
tion theory, this bifurcation takes place at δ = 1/8.
Meanwhile, the imaginary part of a remains zero,
which means that Θ(x) ≡ 0 still holds.

To generalize this result to the nonperturbative
case, we seek conditions for a second branch of solu-
tions to bifurcate off the uniform drift state. Since
∆ = (1 + c2)/2 for the drift state, we consider a
slight perturbation

∆ =
1 + c2

2
+ η, (A.1)

where η is a small deviation. Also, since a = 0
for the uniform drift state, we may take a itself as
a small deviation. Plugging all this into the self-
consistency equation (21) gives:

c =

〈 1 + c2

2
+ η −

[(
1 + c2

2
+ η

)2

− c2 − 2ac cos x − a2 cos2 x

] 1
2

c + a cos x

〉
. (A.2)

Now expand in a two-variable Taylor series for small η and a, and integrate over x to obtain:

0 =
[

2c
c2 − 1

η + O(η2
) ]

+
[
c(c2 − 3)(c2 + 1)

2(1 − c2)3
+

c(c6 − 5c4 + 19c2 + 9)
(1 − c2)5

η + O(η2
) ]

a2 + O(a4
)
. (A.3)

Repeating the approach for the second self-consistency equation (22) gives:

0 =
[
2(c2 − 1) + A(c2 + 1)

2(c2 − 1)
+

A(c4 − 4c2 − 1)
(c2 − 1)3

η + O(η2
) ]

a + O(a3
)
. (A.4)

To locate where another branch of solutions
bifurcates off the uniform drift solution, we inspect
the linearization of the algebraic system above,
given by the Jacobian matrix


2c
(c2 − 1)2

0

0
2(c2 − 1) + A(c2 + 1)

2(c2 − 1)


 (A.5)

If the determinant of the Jacobian is nonzero, the
implicit function theorem tells us that no other
solutions exist nearby. Hence, the existence of a
continuously bifurcating branch requires that the
determinant vanish. Setting the determinant equal
to zero yields c = 0 or 2(c2 − 1) + A(c2 + 1) = 0.
Plugging in the value of c about which we are lin-
earizing, c =

√
2∆ − 1, and solving for ∆ finally
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gives the bifurcation condition

∆c =
2

A + 2
. (A.6)

To compare this with our earlier result from
first-order perturbation theory, we express the per-
turbative variable δ at this critical point by using
its definition from (27) above and the property in
(25). Since ∆ − c = δε2 = δA2 (ignoring higher
order terms), we have δ = (∆ − c)/A2. So

δc =
∆c − c

A2

=
1

A2

(
2

A + 2
−
√

2∆c − 1
)

=
1

A2

(
2

A + 2
−
√

2 − A

2 + A

)

=
1
8
− 1

16
A +

5
128

A2 − 5
256

A3 + O(A4
)
, (A.7)

which agrees with our perturbative prediction that
δc = 1/8 in the limit that A → 0.

Appendix B

Birth of the Chimera State

When β = 0, it is possible to calculate the chimera
state exactly, at the moment of its birth from a spa-
tially modulated drift state. Recall that all states
of pure drift satisfy Θ(x) ≡ 0, and equivalently,
that a has zero imaginary part. Hence we can seek
solutions of the algebraic self-consistency equations
with real values of a and c, for β = 0. At the
onset of the chimera, the first locked oscillators are
born. As suggested by Fig. 6, this occurs when the
graph of R(x) intersects the horizontal line R = ∆
tangentially.

Therefore the bifurcation condition is ∆ =
Rmax = c + a. Plugging this into (15) and (16),
and using Θ(x) ≡ 0 and β = 0, we find that the
self-consistency equations become

c =

〈
c + a −√(c + a)2 − (c + a cos x)2

c + a cos x

〉
(B.1)

and

a = A

〈
c + a −

√
(c + a)2 − (c + a cos x)2

c + a cos x
cos x

〉
.

(B.2)

Note that both of these expressions can be rewrit-
ten solely in terms of the ratio a/c, which suggests
a neat way to solve them parametrically.

Set s = a/c and substitute into (B.1) above,
which becomes

c =

〈
1 + s −√(1 + s)2 − (1 + s cos x)2

1 + s cos x

〉

= f1(s). (B.3)

So we can also write a = sc = sf1(s).
Similarly, the a in Eq. (16) becomes:

a = A〈h cos x〉

= A

〈
1 + s −√(1 + s)2 − (1 + s cos x)2

1 + s cos x
cos x

〉

= Af2(s). (B.4)

All other quantities of interest can also be
expressed in terms of s. For instance, we can now
substitute a = sc = sf1(s) into (B.4) and solve
for A(s) = a/f2(s) = sf1(s)/f2(s). Likewise, ∆ =
c + a = (1 + s)f1(s). In summary, the incipient
chimera state can be written exactly in paramet-
ric form, as follows:

c = f1(s)
a = sf1(s)

A = s
f1(s)
f2(s)

∆ = (1 + s)f1(s).

(B.5)

Since A is a control parameter of the original
equations (the only free one after β has been cho-
sen to be zero), it is desirable to reparametrize this
solution in terms of A. To do that, we invert A(s)
in (B.5) to obtain the following series expansion
for s(A),

s ∼ 16
9π2

A2 − 16
27

(
3π2 − 32

27π4

)
A3 + O(A4

)
,

and use that to rewrite the newborn chimera in
terms of A:

c ∼ 1 − 16
3π2

A +
8
9

(
5π2 − 32

π4

)
A2 + O(A3

)
,

a ∼ 16
9π2

A2 − 16
27

(
3π2 − 16

π4

)
A3 + O(A4

)
,

∆ ∼ 1 − 16
3π2

A +
8
9

(
7π2 − 32

π4

)
A2 + O(A3

)
.

Notice that this has exactly the form of the ansatz
we postulated in (24), based on numerical experi-
ments. As expected, it satisfies ∆1 = c1 as in (25)
and gives ∆2 − c2 = 16/9π2.




